Unit 2 Pre-Test Reaction Equilibrium

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Consider the following equilibrium system:

$$
2 \mathrm{HF}(\mathrm{~g}) \rightleftarrows \mathrm{F}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

Which of the following will have the same effect on the position of equilibrium as does increasing pressure?
a. adding F_{2}
b. removing F_{2}
c. removing HF
d. adding a catalyst
2. Consider the following system at equilibrium:

$$
2 \mathrm{HCN}(\mathrm{~g}) \rightleftarrows \mathrm{H}_{2}(\mathrm{~g})+\mathrm{C}_{2} \mathrm{~N}_{2}(\mathrm{~g})
$$

If some H_{2} is added and a Trial $\mathrm{K}_{\text {eq }}$ is calculated, which of the following is correct?
a. Trial $K_{e q}>\mathrm{K}_{e q}$ and equilibrium shifts left.
b. Trial $\mathrm{K}_{e q}<\mathrm{K}_{e q}$ and equilibrium shifts left.
c. Trial $K_{e q}<K_{e q}$ and equilibrium shifts right.
d. Trial $\mathrm{K}_{e q}>\mathrm{K}_{e q}$ and equilibrium shifts right.
3. What is true for reacting systems that spontaneously go to completion?
a. They are exothermic and their entropy increases.
b. They are exothermic and their entropy decreases.
c. They are endothermic and their entropy increases.
d. They are endothermic and their entropy decreases.

Use the following equilibrium to answer questions 4 and 5.

$$
\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{CH}_{4}(\mathrm{~g}) \quad \Delta \mathrm{H}=-74 \mathrm{~kJ}
$$

4. If the volume of the system is decreased, which of the following occurs?

Equilibrium Shift Net Change [CH_{4}]

a. left increases
b. left decreases
c. right increases
d. right decreases
5. Which of the following will have the same effect on the position of the equilibrium, as that of adding carbon?
a. removing H_{2}
b. adding a catalyst
c. decreasing volume
d. decreasing temperature
6. Consider the equilibrium:

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftarrows \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \mathrm{K}_{e q}=5.7
$$

A 1.0 L container is filled with $2.5 \mathrm{~mol} \mathrm{CH}_{4}, 0.25 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}, 1.2 \mathrm{~mol} \mathrm{CO}$ and $2.2 \mathrm{~mol} \mathrm{H}_{2}$. Which of the following occurs?

	Reaction proceeds	Pressure
a.	left	increases
b.	left	decreases
c.	right	increases
d.	right	decreases

7. Consider the following:

$$
\text { energy } \mathrm{NH}_{4} \mathrm{SH}(\mathrm{~s}) \rightleftarrows \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})
$$

Which of the following describes how enthalpy and entropy change in the forward direction?

	Enthalpy	Entropy increasing
a.	increasing	decreasing
b.	increasing	decreasing
c.	decreasing	ing
d.	decreasing	increasing

8. Consider the following reactions:

I	$\mathrm{Na}_{2} \mathrm{O}(\mathrm{s}) \rightleftarrows 2 \mathrm{Na}(\mathrm{I})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$	$\mathrm{K}_{\text {eq }}=2 \times 10^{-25}$
II	$\mathrm{Na}_{2} \mathrm{O}_{2}(\mathrm{~s}) \rightleftarrows 2 \mathrm{Na}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})$	$\mathrm{K}_{\text {eq }}=5 \times 10^{-29}$
III	$2 \mathrm{Na}_{2} \mathrm{O}(\mathrm{s}) \rightleftarrows 4 \mathrm{Na}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})$	$\mathrm{K}_{\text {eq }}=3 \times 10^{-14}$

Which of the following lists the reactions in order, from the greatest $\left[\mathrm{O}_{2}\right]$ at equilibrium, to the least $\left[\mathrm{O}_{2}\right]$ at equilibrium?
a. I, II, III
b. I, III, II
c. III, I, II
d. III, II, I
9. Methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ is produced according to the following equilibrium equation:

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})+\text { energy }
$$

Which conditions would favour a high yield of methanol?

Temperature
 Pressure

a. low low
b. low high
c. high low
d. high high
10. Consider the following equilibrium equation:

$$
\mathrm{N}_{2} \mathrm{H}_{6} \mathrm{CO}_{2}(\mathrm{~s}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Initially, $0.245 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{6} \mathrm{CO}_{2}$ is placed in a 1.0 L container. At equilibrium, $\left[\mathrm{CO}_{2}\right]=0.18 \mathrm{M}$. What is the value of $\mathrm{K}_{\text {eq }}$?
a. 5.8×10^{-3}
b. 2.3×10^{-2}
c. 3.2×10^{-2}
d. 6.5×10^{-2}
11. Consider the following:

I	$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftarrows \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$	$\mathrm{K}_{\text {eq }}=7.8 \times 10^{-3}$
II	$\mathrm{COCl}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$	$\mathrm{K}_{\text {eq }}=2.2 \times 10^{-10}$
III	$2 \mathrm{NCl}_{3}(\mathrm{~g}) \rightleftarrows \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g})$	$\mathrm{K}_{\text {eq }}=1.0 \times 10^{11}$

Which of the following correctly lists the equilibria in order from most favouring products to least favouring products?
a. I, II, III
b. II, I, III
c. III, I, II
d. III, II, I
12. Consider the following equilibrium:

$$
2 \mathrm{BN}(\mathrm{~s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{BCl}_{3}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \quad \mathrm{K}_{e q}=1.6 \times 10^{-3}
$$

At equilibrium, there were $0.30 \mathrm{~mol} \mathrm{BN}, 2.8 \mathrm{~mol} \mathrm{Cl}_{2}$ and $0.10 \mathrm{~mol}_{2}$ in a 2.0 L container. How many moles of BCl_{3} were present?
a. $\quad 0.044 \mathrm{~mol}$
b. 0.088 mol
c. $\quad 0.21 \mathrm{~mol}$
d. 0.59 mol
13. Consider the following equilibrium:

$$
\mathrm{PH}_{3} \mathrm{BCl}_{3}(\mathrm{~s}) \underset{\mathrm{PH}_{3}(\mathrm{~g})+\mathrm{BCl}_{3}(\mathrm{~g})}{ }
$$

Which of the following correctly represents the $\left[\mathrm{PH}_{3}\right]$ at equilibrium?
a. $\left[\mathrm{PH}_{3}\right]=\frac{\mathrm{Keq}_{4}}{\left[\mathrm{BCl}_{3}\right]}$
b.

c. $\left[\mathrm{PH}_{3}\right]=\frac{\left[\mathrm{BCl}_{3}\right]}{\left[\mathrm{PH}_{3} \mathrm{BCl}_{3}\right] \mathrm{K}_{\text {eq }}}$
d. $\left[\mathrm{PH}_{3}\right]=\frac{\left[\mathrm{PH}_{3} \mathrm{BCl}_{3}\right] \mathrm{K}_{e 4}}{\left[\mathrm{BCl}_{3}\right]}$
14. Consider the following equilibrium system:

Which of the following statements is correct?
a. Increasing [CO] will increase $\mathrm{K}_{e q}$.
b. Increasing temperature will increase $K_{e q}$.
c. Increasing temperature will decrease $\mathrm{K}_{\text {eq }}$.
d. Decreasing $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ will decrease $\mathrm{K}_{e q}$.
15. Consider the following equilibrium system:

$$
2 \mathrm{BN}(\mathrm{~s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{BCl}_{3}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \quad \mathrm{K}_{e q}=1.6 \times 10^{-3}
$$

At equilibrium, there are $0.30 \mathrm{~mol} \mathrm{BN}, 1.1 \mathrm{~mol} \mathrm{Cl}_{2}$ and $0.20 \mathrm{~mol}_{\mathrm{BCl}}^{3}$ in a 2.0 L container. How many moles of N_{2} are present in this equilibrium?
a. 0.0012 mol
b. 0.027 mol
c. 0.053 mol
d. 0.018 mol
16. A student places some $\mathrm{HI}(\mathrm{g})$ into a closed reaction container and the following equilibrium is established:

$$
2 \mathrm{HI}(\mathrm{~g}) \rightleftarrows \mathrm{I}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

Which of the following describes the forward and reverse reaction rates?
a.

C.

b.

d.

17. Consider the following equilibrium equation:

$$
\begin{gathered}
2 \mathrm{NO}_{2}(\mathrm{~g}) \underset{\text { brown colourless }}{\rightleftarrows} \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
\end{gathered}
$$

Some NO_{2} is placed in a 1.0 L container. As the system approaches equilibrium, how are the colour and reverse reaction rate affected?

Colour Reverse reaction rate

a. becomes darker brown
decreases
b. becomes darker brown
increases
c. becomes lighter brown
decreases
d. becomes lighter brown
increases
18. Consider the equilibrium system:

$$
\text { energy }+\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \underset{\mathrm{CH}}{4}(\mathrm{~g})
$$

In which of the following will the two changes shift the equilibrium in the same direction?
a. removing CH_{4} and adding $\mathrm{C}(\mathrm{s})$
b. adding H_{2} and increasing volume
c. adding $\mathrm{C}(\mathrm{s})$ and increasing temperature
d. decreasing the temperature and adding CH_{4}
19. Consider the following equilibrium equation:

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightleftarrows \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Some H_{2} and CO_{2} were placed in a 1.0 L container and equilibrium was established. Which of the following describes the forward and reverse reaction rates?
a.

C.

Time
b.

d.

20. Which of the following shows the correct result for a chemical reaction when the corresponding changes in entropy and enthalpy occur?

	Entropy	Enthalpy	Result
a.	increasing	increasing	reacts completely
b.	increasing	decreasing	reacts completely
c.	increasing	decreasing	no reaction
d.	decreasing	decreasing	no reaction

Use the following equilibrium to answer question 21.

$$
\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s}) \rightleftarrows \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g})
$$

21. Which of the following describes the change in $\left[\mathrm{NH}_{3}\right]$ when the volume of the equilibrium system is decreased at time t_{1} ?
a.

C.

b.

d.

22. Consider the equilibrium:

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftarrows \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \mathrm{K}_{e q}=5.7
$$

A 1.0 L container is filled with $1.2 \mathrm{~mol} \mathrm{CH}_{4}, 1.8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}, 0.50 \mathrm{~mol} \mathrm{CO}$ and $0.25 \mathrm{~mol} \mathrm{H}_{2}$. In which direction will the reaction proceed and what will happen to the pressure of the system?

	Direction	Pressure
a.	left	decreases
b.	left	increases
c.	right	decreases
d.	right	increases

23. Consider the following equilibrium equation:

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}(\mathrm{~g})
$$

Some NO was placed in a 1.0 L container and equilibrium was established. Which of the following describes what happens to the forward and reverse reaction rates?
a.

c.

b.

d.

24. Consider the following equilibrium system:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

An equilibrium mixture of $\mathrm{NO}(\mathrm{g}), \mathrm{O}_{2}(\mathrm{~g})$ and $\mathrm{NO}_{2}(\mathrm{~g})$ is transferred from a 1.0 L container to a 2.0 L container. Which reaction is favoured and what happens to the $\left[\mathrm{NO}_{2}\right]$?

Reaction Favoured

a.
b.
C.
d.
$\left[\mathrm{NO}_{2}\right]$ increases decreases increases decreases
25. Consider the equilibrium:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{FeO}(\mathrm{~s}) \underset{\mathrm{H}}{2} \mathrm{O}(\mathrm{~g})+\mathrm{Fe}(\mathrm{~s})
$$

The following chemicals are placed in separate 1.0 L containers.

Container I	$\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}$
Container II	$\mathrm{Fe}, \mathrm{FeO}$
Container III	$\mathrm{H}_{2} \mathrm{O}, \mathrm{Fe}$
Container IV	$\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{FeO}$

In which container(s) will the equilibrium be established?
a. Container III only
b. Container IV only
c. Containers I and II only
d. Containers III and IV only
26. Consider the following system at equilibrium:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

Some O_{2} is added to the equilibrium. Which of the following describes how the forward and reverse reaction rates change as a new equilibrium is being established?

	Forward Rate	Reverse Rate
a.	increases	decreases
b.	increases	increases
c.	decreases	increases
d.	decreases	decreases

27. Consider the equilibrium system:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NCl}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=+460 \mathrm{~kJ}
$$

Which of the following describes what happens when some NCl_{3} is added?

	Equilibrium Shift	Value of $\mathbf{K}_{\text {eq }}$
a.	right	remains constant
b.	right	increases
c.	left	remains constant
d.	left	decreases

28. Which of the following reactions would be expected to go to completion?
a. $\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{Cl}_{2}(\mathrm{aq})+25 \mathrm{~kJ}$
b. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})+41 \mathrm{~kJ} \rightleftarrows \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
c. $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$

$$
\Delta \mathrm{H}=+114 \mathrm{~kJ}
$$

d. $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ $\Delta \mathrm{H}=-2200 \mathrm{~kJ}$
29. Consider the following equilibrium:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{SO}_{3}(\mathrm{~g})+\text { energy }
$$

After the volume has been decreased, the system shifts to establish a new equilibrium. Which of the following describes how the forward reaction rate changes as a result of decreasing volume?
a.

c.

b.

d.

30. Consider the equilibrium system:

$$
\text { energy }+\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{CH}_{4}(\mathrm{~g})
$$

In which of the following will the two changes shift the equilibrium in the same direction?
a. removing CH_{4} and adding $\mathrm{C}(\mathrm{s})$
b. adding H_{2} and increasing volume
c. adding $\mathrm{C}(\mathrm{s})$ and increasing the temperature
d. decreasing the temperature and adding CH_{4}

Use the following equilibrium to answer questions 31 and 32.

$$
2 \mathrm{NO}(\mathrm{~g}) \rightleftarrows \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=+181 \mathrm{~kJ}
$$

31. Which of the following pairs of stresses cause the same shift to the above equilibrium?
a. adding a catalyst and decreasing volume
b. increasing pressure and increasing [NO]
c. decreasing $\left[\mathrm{N}_{2}\right]$ and decreasing temperature
d. decreasing temperature and increasing volume
32. If some O_{2} is injected into the above equilibrium system, which of the following is correct?

	Equilibrium Shift	Net Change [0 $\mathbf{O}_{\mathbf{2}}$]
a.	left	increase
b.	left	decrease
c.	right	increase
d.	right	decrease

33. Considering enthalpy and entropy factors, in which of the following will reaction not occur?

I	$\mathrm{Cl}_{2}(\mathrm{~g}) \underset{\mathrm{Cl}}{2}$ (aq)	$\Delta \mathrm{H}=-25 \mathrm{~kJ}$
II	$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$	$\Delta \mathrm{H}=-91 \mathrm{~kJ}$
III	$\mathrm{Mg}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightleftarrows \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$	$\Delta \mathrm{H}=-425 \mathrm{~kJ}$
IV	$3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftarrows \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})$	$\Delta \mathrm{H}=+2200 \mathrm{~kJ}$

a. I and II only
b. III only
c. IV only
d. I, II and III only
34. Consider the following:

$$
\text { energy }+6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftarrows \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g})
$$

Which of the following describes how enthalpy and entropy change in the forward direction?

	Enthalpy	Entropy a.
increases	decreases	
b.	increases	increases
c.	decreases	increases
d.	decreases	decreases

35. Consider the equilibrium system:

$$
\text { energy }+\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftarrows \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Which of the following could be true?

Stress	$K_{\text {eq }}$

a. increase pressure no change
b. decrease $\left[\mathrm{CO}_{2}\right]$ increase
c. increase volume increase
d. decrease temperature no change
36. Consider the equilibrium:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \underset{2 \mathrm{SO}_{3}(\mathrm{~g})}{\rightleftarrows}
$$

Initially, $2.1 \mathrm{~mol} \mathrm{SO}_{2}$ and $1.5 \mathrm{~mol} \mathrm{O}_{2}$ were placed in a 2.0 L container. At equilibrium, $\left[\mathrm{SO}_{3}\right]=0.60 \mathrm{M}$. Which of the following is the value of $\mathrm{K}_{\text {eq }}$?
a. 0.25
b. 1.8
c. 4.0
d. 12
37. Consider the following system at equilibrium:

$$
2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{N}_{2} \mathrm{H}_{6} \mathrm{CO}_{2}(\mathrm{~s})+\text { energy }
$$

Which of the following is correct when the volume of the system is decreased?

	Equilibrium Shift	Amount of $\mathbf{C O}_{\mathbf{2}}$
a.	left	increases
b.	left	decreases
c.	right	increases
d.	right	decreases

38. Consider the following equilibrium equation:

$$
\mathrm{MgO}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{MgSO}_{4}(\mathrm{~s})
$$

Which expression represents the $\left[\mathrm{O}_{2}\right]$ at equilibrium?
a. $\left[\mathrm{O}_{2}\right]=\frac{1}{\mathrm{Keq}_{\text {eq }}\left[\mathrm{SO}_{2}\right]}$
b. $\quad\left[\mathrm{O}_{2}\right]=\left(\mathrm{K}_{\mathrm{eq}}\left[\mathrm{SO}_{2}\right]\right)^{2}$
c. $\left[\mathrm{O}_{2}\right]=\left(\frac{1}{\mathrm{~K}_{\text {eq }}\left[\mathrm{SO}_{2}\right]}\right)^{2}$
d. $\left[\mathrm{O}_{2}\right]=\frac{[\mathrm{MgSO}}{\mathrm{K}_{\mathrm{eq}}[\mathrm{MgO}]\left[\mathrm{SO}_{2}\right]}$
39. Consider the following equilibrium equation:

$$
\mathrm{NO}_{2} \mathrm{Cl}(\mathrm{~g}) \rightleftarrows \mathrm{NO}_{2}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \quad \mathrm{K}_{e q}=0.75
$$

Which of the following is the $\mathrm{K}_{\text {eq }}$ value for:

$$
2 \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

a. 0.56
b. 0.75
c. 0.87
d. 1.5
40. Consider the following equilibrium:

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}(\mathrm{~g}) \quad \mathrm{K}_{e q}=8.1 \times 10^{-3}
$$

Which of the following is the $\mathrm{K}_{\text {eq }}$ value for:

$$
\mathrm{NO}(\mathrm{~g}) \rightleftarrows 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})
$$

a. 8.1×10^{-3}
b. 9.0×10^{-2}
c. 11
d. 1.2×10^{2}

Problem

41. (4 marks)

Consider the equilibrium: $\quad \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}(\mathrm{g}) \quad \mathrm{K}_{\text {eq }}=4.2 \times 10^{-8}$
If $0.275 \mathrm{~mol}_{2}$ and $0.275 \mathrm{~mol} \mathrm{O}_{2}$ are initially placed in a 3.0 L container, calculate the equilibrium concentration of NO that results.
42. (4 marks)

Consider the following equilibrium:

$$
2 \mathrm{NCl}_{3}(\mathrm{~g}) \rightleftarrows \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \quad \mathrm{K}_{e q}=3.3 \times 10^{-8}
$$

Some NCl_{3} is initially placed in a 1.0 L container. At equilibrium, $1.38 \times 10^{-2} \mathrm{~mol} \mathrm{Cl}_{2}$ is present. Calculate the $\left[\mathrm{NCl}_{3}\right]$ present initially.
43. (4 marks)

Consider the following equilibrium:

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})
$$

Initially, $9.0 \times 10^{-4} \mathrm{~mol} \mathrm{~S}_{2}$ and $1.1 \times 10^{-2} \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}$ are placed in a 1.0 L container. At equilibrium, there is $8.6 \times$ $10^{-3} \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}$ present. Calculate $\mathrm{K}_{\text {eq }}$.
44. (4 marks)

Consider the following equilibrium reaction:

$$
2 \mathrm{BrCl}(\mathrm{~g}) \rightleftarrows \mathrm{Br}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\text {eq }}=0.145
$$

Some BrCl was placed into a 2.0 L container and allowed to reach equilibrium.
At equilibrium, $\left[\mathrm{Br}_{2}\right]$ was 0.34 M . How many moles of BrCl were initially placed in the container?
45. (4 marks)

Consider the following system at equilibrium:

$$
\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{~F}_{2}(\mathrm{~g})<->2 \mathrm{OF}_{2}(\mathrm{~g})
$$

A stress is applied by removing some F_{2} and a new equilibrium is established. Describe how the forward and reverse reaction rates are instantly affected by the stress and how they then change until a new equilibrium is reached.

Unit 2 Pre-Test Reaction Equilibrium Multiple Choice Answers

MULTIPLE CHOICE

1. D
2. B
3. A
4. A
5. C
6. B
7. B
8. B
9. C
10. D
11. A
12. A
13. C
14. C
15. C
16. A
17. D
18. D
19. A
20. B
21. A
22. D
23. A
24. B
25. D
26. C
27. C
28. D
29. D
30. D
31. A
32. A
33. C
34. A
35. A
36. C
37. D
38. C
39. A
40. C
