

HL Questions on Trends across period 3

- Explain why magnesium oxide, MgO, aluminium oxide, Al₂O₃ and magnesium chloride, MgCl₂, have high melting points and conduct electricity when molten whereas aluminium chloride, AlCl₃, which is a solid at room temperature, has a much lower melting point and does not conduct electricity when molten.
- 2. Sulfur trioxide, SO₃, melts at 17 °C and boils at 45°C. Explain why molten sulfur trioxide does not conduct electricity and yet a solution of sulfur trioxide in water is a good conductor of electricity.
- 3. The chlorides in which the elements of period 3 have their highest oxidation state are: NaCl, MgCl₂, AlCl₃, SiCl₄, PCl₅, SCl₆, Cl₂ Iodine can form an interhalogen compound IF₇. Suggest a reason why chlorine cannot form ClCl₇.
- 4. (a) State the equation for the reaction of silicon tetrachloride with water
 (b) Carbon and silicon are both in group 4.
 Suggest a reason why tetrachloromethane, CCl₄ does not react with water.
- 5. Sodium chloride and magnesium chloride are both ionic and both are soluble in water. Explain why sodium chloride forms a neutral solution in water whereas a solution of magnesium chloride is slightly acidic.
- 6. State the equations for the reactions of phosphorus trichloride, PCl₃, and phosphorus pentachloride, PCl₅, with water. Suggest a reason why both reactions are strongly exothermic.