Chemistry 11 - Review

Part A - True or False.

Indicate whether each of the following statements is true or false. Correct the false statements.1. The mass of an electron is equal to the mass of a proton.
2. The mass of a proton is approximately equal to the mass of a neutron.
3. The atomic number represents the number of protons in a nucleus.
4. The proton has a mass of approximately $1 u$.
5. The difference in mass of isotopes of the same element is due to the different number of protons in the nucleus.
6. The isotope carbon-12 is used as the relative mass standard for the atomic mass scale.
7. The mass of the most common isotope of each element is listed on the periodic table.

Part B - Multiple Choice

1. $A(n)$ __ is used to represent a compound.
a) symbol
b) equation
c) subscript
d) formula
2. ___ atoms or groups of atoms are called ions.
a) charged
b) diatomic
c) neutral
d) monatomic
3. For the formula of a compound to be correct, the algebraic addition of the charges on the atoms or ions in the compound must add up to _
a) zero
b) one
c) two
d) four
4. Potassium bromide is an example of $a(n)$ _ compound.
a) molecular
b) organic
c) polyatomic
d) ionic
5. The only common polyatomic ion that has a positive charge is the __ion.
a) phosphate
b) ammonium
c) sulfate
d) nitrate
6. In the formula $\mathrm{H}_{2} \mathrm{SO}_{4}$, the number 4 would be called $\mathrm{a}(\mathrm{n})$ _-
a) subscript
b) oxidation number
c) coefficient
d) charge
7. Which subatomic particle contributes the least to the mass of an atom?
a) nucleon
b) electron
c) proton
d) neutron
8. In the free, or uncombined, state the number of protons in the nucleus of an element must equal the \qquad
a) mass number
c) mass number - atomic number
b) number of neutrons in the nucleus
d) number of electrons present
9. Which of the following ideas of the Bohr model is not retained in the modern theory of atomic structure?
a) Electrons can absorb or emit energy only in whole numbers of photons.
b) Atoms have a central positively charged nucleus.
c) Electrons move around the nucleus as planets orbit the sun.
d) Most of the volume of an atom is empty space.
10. Which of the following orbitals is spherical in shape?
a) $3 p$
b) 2 s
c) $4 d$
d) $5 f$
11. The third energy level of an atom may have __ electrons.
a) 2
b) 18
c) 8
d) 32
12. How many sublevels are possible at the fourth energy level?
a) 2
b) 3
c) 4
d) 18
13. Lustrous, malleable, ductile elements that are good conductors of electricity and heat are classified as _.
a) metals
b) nonmetals
c) metalloids
d) noble gases
14. The electron configuration of a certain element ends with $3 p^{5}$. Which of the following describes its position in the periodic table?
a) period 5, group 13
b) period 3, group 15
c) period 3, group 17
d) period 5, group 15
15. Which of the following is an example of a metalloid?
a) iodine
b) boron
c) bromine
d) indium
16. The periodicity of the elements is basically a function of their \qquad
a) nuclear stability
b) atomic numbers
c) mass numbers
d) none of these
17. An element with seven electrons in the outer level would be a _.
a) metal
b) metalloid
c) noble gas
d) nonmetal
18. As the atomic number in a period increases, the degree of nonmetallic character _.
a) increases
b) decreases
c) increases then decreases d) remains the same
19. Elements in a group have similar chemical properties because of their similar
a) nuclear configurations
c) mass numbers
b) outer electron configurations
d) names
20. The period number in the periodic table designates the _ for the row.
a) total nuclear charge
c) maximum number of outer electrons
b) maximum number of nucleons
d) highest energy level
21. The radii of the atoms become smaller from sodium to chlorine across period 3. This is primarily a result of __
a) the shielding effect
c) the increased number of electrons
b) increased nuclear charge
d) decreased metallic character
22. Compared to the stability of the original atom, the stability of its ion that resembles a noble gas configuration would be
a) identical
b) sometimes less
c) less
d) greater
23. The formation of bonds between atoms depends on \qquad
c) both of the preceding factors
a) the electron configurations of the atoms involved
d) neither of the preceding factors
24. The particle that results when two or more atoms form covalent bonds is a \qquad
a) single charged atom
b) molecule
c) polyatomic ion
d) b or c
25. Compounds that have low melting points, are brittle, and do not conduct electricity are probably \qquad
a) covalent
b) metallic
c) ionic
d) compounds of polyatomic ions
26. The most active \qquad have the highest electronegativities.
a) nonmetals
b) metalloids
c) metals
d) noble gases
27. _ compounds have high melting points, conduct electricity in the molten phase, and tend to be soluble in water.
a) hydrogen
b) metallic
c) covalent
d) ionic
28. The element in the following group that has the lowest electronegativity is \qquad
a) potassium
b) arsenic
c) bromine
d) chromium
29. If there are only two electron pairs in the outer energy level of an atom in a molecule, they will be found \qquad
\qquad
a) at 90° to one another
c) at 120° to one another
b) on the same side of the nucleus
d) on opposite side of the nucleus
30. The __ molecule has two bonding pairs and two unshared pairs of electrons.
a) CH_{4}
b) $\mathrm{H}_{2} \mathrm{O}$
c) NH_{3}
d) HF
31. A certain atom contains 34 protons, 34 electrons, and 45 neutrons. This atom has a mass number of \qquad
a) 34
b) 45
c) 68
d) 79
32. An example of a compound is
a) oxygen
b) mercury
c) salt
d) diamond
33. Carbon is classed as an element rather than as a compound because it
a) cannot be chemically decomposed into two or more substances
b) has been known for many centuries
c) is formed when wood is heated out of contact with air
d) combines with oxygen to form a gas
34. The positively charged particles in the nucleus of an atom are called
a) protons
b) neutrons
c) electrons
d) ions
35. The charged particles that are found outside the nucleus of an atom are called
a) protons
b) ions
c) electrons
d) mesons
36. A nonmetallic atom generally becomes a negative ion by
a) losing protons
b) losing electrons
c) gaining protons
d) gaining electrons
37. Which of the following subatomic particles has the smallest mass?
a) electron
b) neutron
c) proton
d) nucleus
38. Which of the following symbols represents an atom that contains the largest number of neutrons?
a) ${ }_{92}^{235} \mathrm{U}$
b) ${ }_{92}^{239} \mathrm{U}$
c) ${ }_{93}^{23} \mathrm{~Np}$
d) ${ }_{94}^{239} \mathrm{Pu}$
39. The nuclide symbol ${ }_{8}^{16} \mathrm{O}$ represents an oxygen atom with
a) a mass of $8 u$
b) an atomic number of 16
C) a mass of $16 u$
d) 16 neutrons
40. If Z represents the atomic number of an element and A represents the mass number, then the number of neutrons in one atom is
a) A
b) $A+Z$
c) $A-Z$
d) $Z-A$
41. Which of the following statements about the elemental species ${ }_{11}^{24} X$ and ${ }_{12}^{25} Z$ is correct?
a) They are isotopes of the same element.
c) They are members of the same chemical family.
b) They are nonmetals.
d) They have the same number of neutrons per atom.
42. An element X has a mass number of 32 and an atomic number of 16 . The most common ion of element X is represented by
a) X^{+}
b) X^{2-}
c) X
d) X^{2+}

Part C - Short Answer

1. What is the maximum number of electrons that may occupy one orbital?
2. The Lewis electron dot diagram is used to represent only which electrons in the atom?
3. What is the diagonal rule used to predict?
4. How many sublevels are possible at the third energy level?
5. How many orbitals are there in the f sublevel?
6. What is the maximum number of electrons that can occupy a dsublevel?
7. Which sublevel may contain a maximum of three pairs of electrons?
8. What must be true about the spins of two electrons occupying the same orbital?
9. Write the electron configuration for each of the following elements:
a) lithium
b) radium
c) sodium
d) mercury
10. Draw the energy level diagram for each of the following elements:
a) tin
b) krypton
c) gold
d) potassium
11. Write the energy level population for each of the following elements:
a) calcium
b) sulfur
c) scandium
d) tungsten
12. Element X has the following configuration: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 2 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{1}$
a) What period is this element located in?
b) What group is this element in?
c) Identify the element.
d) Is the element a metal, nonmetal, or metalloid?
13. Write the correct names for the following chemical compounds.
a) $\mathrm{HCl}(\mathrm{aq})$
b) KOH
c) HgOH
e) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
f) $\mathrm{N}_{2} \mathrm{O}_{5}$
g) HF
h) $\mathrm{Pb}(\mathrm{OH})_{2}$
i) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
j) NaHCO_{3}
k) $\mathrm{Zn}\left(\mathrm{NO}_{2}\right)_{2}$
l) $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$
14. List five properties of metals and five properties of nonmetals.
15. How are substances that are gases or soft solids at room temperature classified?
16. Would an element with two outer electrons be a metal or a nonmetal?
17. What Russian scientist designed the first periodic table?
18. Which group of elements has eight outer electrons?
19. For the transition elements, as the atomic number increases, to which sublevel are the electrons being added?
20. According to the octet rule, how many pairs of outer electrons do the most stable atoms have?
21. In the lanthanide series, as the atomic number increases, to which sublevel are electrons being added?
22. Give examples of molecules with the following shapes:
a) linear
b) trigonal planer
c) bent
c) trigonal pyramidal
e) tetrahedral
23. Use electron dot formulas to show the complete balanced bonding reactions between the following elements. Indicate the type of bond expected.
a) sodium \& oxygen
c) zirconium \& sulfur
b) nitrogen \& hydrogen
d) magnesium \& chlorine
*23. Compare the boiling points of methane, ethane, propane, and butane. Use Intermolecular bonding to explain why they are different.
*24. Compare the boiling points of propanoic acid, 1-butanol, diethyl ether, butanal, and pentane. Use Intermolecular bonding to explain why they are different.
24. Write the correct chemical formula for each compound and balance the equation.
a) sodium carbonate + calcium hydroxide \rightarrow sodium hydroxide + calcium carbonate
b) carbon dioxide + water \rightarrow carbonic acid
c) phosphorus + oxygen \rightarrow phosphorus pentoxide
d) sodium + water \rightarrow sodium hydroxide + hydrogen
e) zinc + sulfuric acid \rightarrow zinc sulfate + hydrogen
f) aluminum sulfate + calcium hydroxide \rightarrow aluminum hydroxide + calcium sulfate
g) calcium oxide + water \rightarrow calcium hydroxide
h) iron + copper(I) nitrate \rightarrow iron(II) nitrate + copper
i) iron(II) sulfide + hydrochloric acid \rightarrow hydrogen sulfide + iron(II) chloride
j) potassium oxide + water \rightarrow potassium hydroxide
k) carbon + ferric oxide \rightarrow iron + carbon dioxide
I) sulfur tetrafluoride + water \rightarrow sulfur dioxide + hydrofluoric acid
m) calcium hydroxide + phosphoric acid \rightarrow calcium phosphate + water
n) ethane + oxygen \rightarrow carbon dioxide + water
o) aluminum sulfate + ammonia + water \rightarrow aluminum hydroxide + ammonium sulfate
25. Identify the type of reaction. Write the correct chemical formulas of the compounds, complete and balance the equations and name the products formed.
a) calcium carbonate + hydrochloric acid \rightarrow
b) iron + sodium bromide \rightarrow
c) ammonium acetate + iron(II)chloride \rightarrow
d) silver bromide + ammonium sulfate \rightarrow
e) zinc + sulfuric acid \rightarrow
f) neon + potassium \rightarrow
g) lead(II)hydroxide + hydrochloric acid \rightarrow
h) iron + sulfur \rightarrow
i) potassium chlorate (heated) \rightarrow
j) calcium oxide + water \rightarrow
k) dinitrogen pentoxide + water \rightarrow
I) carbon dioxide + water \rightarrow
m) chlorine + chromium(III) bromide \rightarrow
n) sulfur + oxygen \rightarrow
o) zinc + hydrochloric acid \rightarrow
p) sodium + water \rightarrow
q) magnesium + water \rightarrow
r) copper + stannic nitrate \rightarrow
s) aluminum + cupric sulfate \rightarrow

Part D - Calculations

1. Calculate the average atomic mass of the following elements:
a) $\begin{array}{r}\mathrm{Mg}-24 \\ \mathrm{Mg}-25\end{array}$
mass $=23.985 \mathrm{u}$
78.70\%
10.13\%
b) Ir -191
mass $=191.0 \mathrm{u}$
37.58\% $\mathrm{Mg}-26$
mass $=24.986 \mathrm{u}$
11.17\%
mass $=193.0 u \quad 62.42 \%$
2. Calculate the percentage of each of the isotopes of silver if silver-107 has a mass of 106.905 u and silver-109 has a mass of $108.905 u$ and the average atomic mass of silver is 107.869 u
*3. Naturally, occurring silicon consists of three isotopes, ${ }^{28} \mathrm{Si}^{29}{ }^{29} \mathrm{Si}$, and ${ }^{30} \mathrm{Si}$, whose atomic masses are 27.9769, 28.9765, and 29.9738, respectively. The most abundant isotope is ${ }^{28} \mathrm{Si}$, which accounts for 92.23 percent of naturally occurring silicon. Given that the observed atomic mass of silicon is 28.0855 , calculate the percentages of ${ }^{29} \mathrm{Si}$ and ${ }^{30} \mathrm{Si}$ in nature.
3. Complete the chart below:

Element	Atomic \#	Mass \#	\# Protons	\# Neutrons	\# Electrons
calcium-43					
lead-211					
plutonium-242					
chromium-50					
${ }^{65} \mathrm{Cu}^{2+}$					
${ }^{34} \mathrm{~S}^{2-}$					
	82		53	126	78

5. Convert each of the following to moles.
a. $\quad 8.8 \mathrm{~g}$ of potassium carbonate
d. $\quad 5.00 \times 10^{13}$ atoms of iron
e. 8.63×10^{28} molecules of water
f. $\quad 450.0 \mathrm{~mL}$ helium at STP
g. 236.0 g of ammonium phosphate
h. $\quad 15.0 \mathrm{~g}$ of butanoic acid
b. $\quad 0.257 \mathrm{~g}$ of arsenic pentachloride
6. Calculate the mass of each of the following.
a. 2.60 mol of sodium carbonate
c. $\quad 25.0 \mathrm{~mL}$ of carbon dioxide at STP
b. five million atom of gold
d. 4.50×10^{21} molecules of decanoic acid
7. Calculate the molarity of 825 mL of solution, which contains 30.0 g of acetic acid.
8. What volume of solution can be made from 80.0 g of sodium hydroxide if a 2.00 M solution is required?
9. What mass of calcium chloride is required to produce 750.0 mL of a 0.500 M solution?
10. What volume Of 14.0 M nitric acid is required to produce 750.0 mL of a 0.250 M solution?
11. What concentration results when 250.0 mL of a 0.125 M solution of hydrochloric acid is mixed with 125.0 mL of a 1.00 M solution?
*12. What volume of 0.225 M sulfuric acid must be mixed with 500.0 mL of a 0.750 M solution in order to obtain a 0.500 M solution?
E. STOICHIOMETRY - Begin each problem by writing a balanced chemical equation.
12. Carbon dioxide is produced in the reaction between calcium carbonate and hydrochloric acid. How many grams of calcium carbonate would be needed to react completely with 15.0 g of hydrochloric acid? How many grams of calcium chloride would be formed?
13. Sulfur dioxide may be catalytically oxidized to sulfur trioxide. How many grams of sulfur dioxide could be converted by this process if 100.0 g of oxygen are available for the oxidation?
14. Phosphoric acid is produced in the reaction between calcium phosphate and sulfuric acid. How much of the phosphoric acid would be produced from 55.0 g of the calcium phosphate?
15. How much magnesium sulfate is needed to completely react with 145 g of sodium chloride? How much sodium sulfate could be produced by this reaction?
16. Gold will dissolve in the acid mixture known as aqua regia according to the following reaction:

$$
\mathrm{Au}+\mathrm{HNO}_{3}+3 \mathrm{HCl} \rightarrow \mathrm{AuCl}_{3}+\mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}
$$

How much gold(III)chloride will be produced in this reaction when one starts with 5.0 mg of gold? How much hydrochloric acid must be added initially to dissolve the all this gold?
6. How many grams of sulfuric acid will react with 400.0 g of aluminum metal?
7. It is desired to prepare 50.0 g of water by synthesis. How many litres of hydrogen must be used?
8. An unknown amount of potassium chlorate was heated until no more oxygen was evolved. 15.824 g of potassium chloride remained in the test tube. What mass of potassium chlorate had originally been placed in the tube? What volume of oxygen gas was evolved in the process?
9. How many grams of carbon can be completely burned in 15.0 L of oxygen? How many litres of carbon dioxide gas are produced in this reaction?
10. How many grams of magnesium metal are required to liberate 250.0 mL of hydrogen gas from hydrochloric acid? Exactly how much acid would be used up in this reaction?
11. Will 30.0 L of fluorine gas completely react with 50.0 L of hydrogen gas? Which gas is in excess and by how much? What volume of hydrogen fluoride is formed in this reaction?
12. A mixture containing 100.0 g of H_{2} and 100.0 g of O_{2} is sparked so that water is formed. How much water is formed?
13. When copper is heated with sulfur, $\mathrm{Cu}_{2} \mathrm{~S}$ is formed. How many grams of $\mathrm{Cu}_{2} \mathrm{~S}$ could be produced if 100.0 g of copper is heated with 50.0 g of sulfur?
14. What volume (at STP) of carbon monoxide is required to produce 100.0 g of iron according to the equation:

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO} \rightarrow \mathrm{Fe}+\mathrm{CO}_{2} \quad \text { (not balanced) }
$$

15. What is the molarity of a NaOH solution if $25.00 \mathrm{~cm}^{3}$ is required to completely neutralize $40.00 \mathrm{~cm}^{3}$ of a 1.50 M solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
16. Calculate the volume of a 0.600 M solution of HNO_{3} necessary to neutralize $28.55 \mathrm{~cm}^{3}$ of a 0.450 M solution of KOH .
17. A titration of $15.00 \mathrm{~cm}^{3}$ of household ammonia, $\mathrm{NH} 4 \mathrm{OH}(\mathrm{aq})$, required $38.57 \mathrm{~cm}^{3}$ of 0.780 M HCl . Calculate the molarity of the ammonia.
18. What volume of $0.250 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ is required to neutralize $30.00 \mathrm{~cm}^{3}$ of a $0.0500 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution?
19. What mass of $\mathrm{Ca}(\mathrm{OH})_{2}$ would be required to completely neutralize $50.0 \mathrm{~cm}^{3}$ of 0.125 M HCl ?
20. What mass of $\mathrm{Mg}(\mathrm{OH})_{2}$ would be required to completely neutralize $70.0 \mathrm{~cm}^{3}$ of $0.175 \mathrm{M} \mathrm{HNO}_{3}$?
*21. Hydrazine is a nitrogen-hydrogen compound having the formula $\mathrm{N}_{2} \mathrm{H}_{4}$. It is an oily, colourless liquid that freezes at $1.5^{\circ} \mathrm{C}$ and boils at $113.5^{\circ} \mathrm{C}$. The principal use of hydrazine and certain compounds derived from it is a rocket fuels, but it is also used in fuel cells, in the treatment of water in boilers to removed dissolved oxygen gas, and in the plastics industry. One widely used method for the manufacture of hydrazine is the Raschig process. The Raschig process involves three reaction steps. In the first step, sodium hydroxide is reacted with chlorine to produce sodium hypochlorite, sodium chloride and water. The sodium hypochlorite produced in the first step is reacted with ammonia in the second step to produce chloramine $\left(\mathrm{NH}_{2} \mathrm{Cl}\right)$ and sodium hydroxide. The chloramine and sodium hydroxide produced in the second step is reacted with ammonia in the third step to produce hydrazine, sodium chloride and water. A chemical plane using the Raschig process obtains 0.299 kg of 98.0% hydrazine for every 1.00 kg of chlorine. What are the theoretical, actual, and percent yields of pure hydrazine?
*22. The characteristic odour of pineapple is due to ethyl butyrate, a compound containing carbon, hydrogen, and oxygen. Combustion of 2.78 mg of ethyl butyrate produces 6.32 mg of carbon dioxide and 2.58 mg of water. What is the empirical formula of the compound?
*23. Nicotine, a component of tobacco, is composed of carbon, hydrogen, and nitrogen. A 5.250 mg sample of nicotine was combusted, producing 14.242 mg of carbon dioxide and 4.083 mg of water. What is the empirical formula for nicotine?

F - ORGANIC CHEMISTRY

1. Draw the structure of each of the following compounds:
a) 2,3-dinitrophenol
j) pentanoic acid
s) 3-methyl-3-pentanol
b) 2,3,4-trimethyloctane
k) propyl ethanoate
t) ethylmethyl ether
c) 1,3-cyclohexadiene
l) propanone
u) butyl butanoate
d) 4,4-dimethyl-2-pentene
m) 1-propoxybutane
v) 3-ethylhexanoic acid
e) phenylethene
n) ethyl chloroethanoate
w) nitromethane
f) 2-phenylpropane
o) iodobenzene
x) 3-ethyl-5-methyl-2-naphthol
g) 1,3-dibromonaphthalene
p) 3-methyl-3-pentanol
y) 1,3,5-cyclohexanetriol
h) 1,2-ethanediol
q) 4-methylphenol
z) propyl 2,3-dimethylpentanoate
r) 2-amino-3-phenylpropanol
2. Write a balanced equation for each of the reactions below. Identify the type of reaction and name the products.
a) pentane + bromine \rightarrow
f) 2-naphthol + oxygen \rightarrow
b) 2,3-dichloro-2-pentene + water \rightarrow
g) 2,5,6-trimethyl-3-heptyne + fluorine \rightarrow
c) butanoic acid + ethanol \rightarrow
h) 3,4-diethyl-2-methylhexanoic acid +1 -pentanol \rightarrow
d) benzene + iodine \rightarrow
i) 3-methoxypentane + oxygen \rightarrow
e) naphthalene + oxygen \rightarrow
j) 2-pentyne + (2 mol) water \rightarrow
3. Name the following compounds.
