Stoichiometry Review Problems

1. How many moles of O_{2} should be supplied to burn 1 mol of $\mathrm{C}_{3} \mathrm{H}_{8}$ (propane) molecules in a camping stove?
2. How many moles of O_{2} molecules should be supplied to burn 1 mol of CH_{4} molecules in a domestic furnace?
3. Calculate the mass of $\mathrm{Al}_{2} \mathrm{O}_{3}$ produced when 100 g of aluminum burns in oxygen.
4. "Slaked lime" $\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)$ is formed from "quick-lime" (CaO) by adding water. What mass of water is needed to convert 10 kg of quicklime to slaked lime? What mass of slaked lime is produced?
5. Camels store the fat tristearin $\left(\mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6}\right)$ in the hump. As well as being a source of energy, the fat is a source of water, because when it is used the following reaction takes place. What mass of water is available from 1.0 kg of fat?

$$
2 \mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6}(\mathrm{~s})+163 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 114 \mathrm{CO}_{2}(\mathrm{~g})+110 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

6. The compound diborane $\left(\mathrm{B}_{2} \mathrm{H}_{6}\right)$ was at one time considered for use as a rocket fuel. How many grams of liquid oxygen would a rocket have to carry to burn 10 kg of diborane completely? The products of the combustion are $\mathrm{B}_{2} \mathrm{O}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$.
7. Given the balanced chemical equation, how many moles of sodium bromide (NaBr) could be produced from 0.172 mol of bromine $\left(\mathrm{Br}_{2}\right)$?

$$
\mathrm{Br}_{2}+2 \mathrm{NaI} \rightarrow 2 \mathrm{NaBr}+\mathrm{I}_{2}
$$

8. How many formula units of calcium oxide (CaO) can be produced from 4.9×10^{5} molecules of oxygen gas $\left(\mathrm{O}_{2}\right)$ that react with calcium (Ca) according to this balanced chemical equation?

$$
2 \mathrm{Ca}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CaO}(\mathrm{~s})
$$

9. Aluminum metal $(A I)$ reacts with sulfur (S) to produce aluminum sulfide $\left(A_{2} S_{3}\right)$ according to the following chemical equation. How many atoms of aluminum will react completely with 1.33×10^{24} atoms of sulfur?

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{~S}(\mathrm{~s}) \rightarrow \mathrm{A}_{2} \mathrm{~S}_{3}(\mathrm{~s})
$$

